Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34197342

RESUMO

Functional loss of myosin Vb (MYO5B) induces a variety of deficits in intestinal epithelial cell function and causes a congenital diarrheal disorder, microvillus inclusion disease (MVID). The impact of MYO5B loss on differentiated cell lineage choice has not been investigated. We quantified the populations of differentiated epithelial cells in tamoxifen-induced, epithelial cell-specific MYO5B-knockout (VilCreERT2 Myo5bfl/fl) mice utilizing digital image analysis. Consistent with our RNA-sequencing data, MYO5B loss induced a reduction in tuft cells in vivo and in organoid cultures. Paneth cells were significantly increased by MYO5B deficiency along with expansion of the progenitor cell zone. We further investigated the effect of lysophosphatidic acid (LPA) signaling on epithelial cell differentiation. Intraperitoneal LPA significantly increased tuft cell populations in both control and MYO5B-knockout mice. Transcripts for Wnt ligands were significantly downregulated by MYO5B loss in intestinal epithelial cells, whereas Notch signaling molecules were unchanged. Additionally, treatment with the Notch inhibitor dibenzazepine (DBZ) restored the populations of secretory cells, suggesting that the Notch pathway is maintained in MYO5B-deficient intestine. MYO5B loss likely impairs progenitor cell differentiation in the small intestine in vivo and in vitro, partially mediated by Wnt/Notch imbalance. Notch inhibition and/or LPA treatment may represent an effective therapeutic approach for treatment of MVID.


Assuntos
Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Miosina Tipo V/deficiência , Receptores Notch/metabolismo , Via de Sinalização Wnt/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Dibenzazepinas/farmacologia , Modelos Animais de Doenças , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Jejuno/citologia , Jejuno/efeitos dos fármacos , Jejuno/patologia , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/uso terapêutico , Síndromes de Malabsorção/tratamento farmacológico , Síndromes de Malabsorção/patologia , Camundongos , Camundongos Knockout , Microvilosidades/genética , Mucolipidoses/tratamento farmacológico , Mucolipidoses/patologia , Miosina Tipo V/genética , Organoides , Cultura Primária de Células , Receptores Notch/antagonistas & inibidores , Células-Tronco/fisiologia , Via de Sinalização Wnt/efeitos dos fármacos
2.
J Biol Chem ; 295(39): 13556-13569, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32727849

RESUMO

Mutations in the galactosidase ß 1 (GLB1) gene cause lysosomal ß-galactosidase (ß-Gal) deficiency and clinical onset of the neurodegenerative lysosomal storage disease, GM1 gangliosidosis. ß-Gal and neuraminidase 1 (NEU1) form a multienzyme complex in lysosomes along with the molecular chaperone, protective protein cathepsin A (PPCA). NEU1 is deficient in the neurodegenerative lysosomal storage disease sialidosis, and its targeting to and stability in lysosomes strictly depend on PPCA. In contrast, ß-Gal only partially depends on PPCA, prompting us to investigate the role that ß-Gal plays in the multienzyme complex. Here, we demonstrate that ß-Gal negatively regulates NEU1 levels in lysosomes by competitively displacing this labile sialidase from PPCA. Chronic cellular uptake of purified recombinant human ß-Gal (rhß-Gal) or chronic lentiviral-mediated GLB1 overexpression in GM1 gangliosidosis patient fibroblasts coincides with profound secondary NEU1 deficiency. A regimen of intermittent enzyme replacement therapy dosing with rhß-Gal, followed by enzyme withdrawal, is sufficient to augment ß-Gal activity levels in GM1 gangliosidosis patient fibroblasts without promoting NEU1 deficiency. In the absence of ß-Gal, NEU1 levels are elevated in the GM1 gangliosidosis mouse brain, which are restored to normal levels following weekly intracerebroventricular dosing with rhß-Gal. Collectively, our results highlight the need to carefully titrate the dose and dosing frequency of ß-Gal augmentation therapy for GM1 gangliosidosis. They further suggest that intermittent intracerebroventricular enzyme replacement therapy dosing with rhß-Gal is a tunable approach that can safely augment ß-Gal levels while maintaining NEU1 at physiological levels in the GM1 gangliosidosis brain.


Assuntos
Terapia de Reposição de Enzimas , Fibroblastos/enzimologia , Lisossomos/enzimologia , Mucolipidoses , beta-Galactosidase/uso terapêutico , Animais , Células CHO , Cricetulus , Humanos , Lisossomos/genética , Camundongos , Camundongos Mutantes , Mucolipidoses/tratamento farmacológico , Mucolipidoses/enzimologia , Mucolipidoses/genética , Neuraminidase/genética , Neuraminidase/metabolismo
3.
Gastroenterology ; 159(4): 1390-1405.e20, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32534933

RESUMO

BACKGROUND & AIM: Myosin VB (MYO5B) is an essential trafficking protein for membrane recycling in gastrointestinal epithelial cells. The inactivating mutations of MYO5B cause the congenital diarrheal disease, microvillus inclusion disease (MVID). MYO5B deficiency in mice causes mislocalization of SGLT1 and NHE3, but retained apical function of CFTR, resulting in malabsorption and secretory diarrhea. Activation of lysophosphatidic acid (LPA) receptors can improve diarrhea, but the effect of LPA on MVID symptoms is unclear. We investigated whether LPA administration can reduce the epithelial deficits in MYO5B-knockout mice. METHODS: Studies were conducted with tamoxifen-induced, intestine-specific knockout of MYO5B (VilCreERT2;Myo5bflox/flox) and littermate controls. Mice were given LPA, an LPAR2 agonist (GRI977143), or vehicle for 4 days after a single injection of tamoxifen. Apical SGLT1 and CFTR activities were measured in Üssing chambers. Intestinal tissues were collected, and localization of membrane transporters was evaluated by immunofluorescence analysis in tissue sections and enteroids. RNA sequencing and enrichment analysis were performed with isolated jejunal epithelial cells. RESULTS: Daily administration of LPA reduced villus blunting, frequency of multivesicular bodies, and levels of cathepsins in intestinal tissues of MYO5B-knockout mice compared with vehicle administration. LPA partially restored the brush border height and the localization of SGLT1 and NHE3 in small intestine of MYO5B-knockout mice and enteroids. The SGLT1-dependent short-circuit current was increased and abnormal CFTR activities were decreased in jejunum from MYO5B-knockout mice given LPA compared with vehicle. CONCLUSIONS: LPA may regulate a MYO5B-independent trafficking mechanism and brush border maturation, and therefore be developed for treatment of MVID.


Assuntos
Lisofosfolipídeos/uso terapêutico , Síndromes de Malabsorção/tratamento farmacológico , Síndromes de Malabsorção/patologia , Microvilosidades/patologia , Mucolipidoses/tratamento farmacológico , Mucolipidoses/patologia , Miosina Tipo V/deficiência , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Modelos Animais de Doenças , Enterócitos/patologia , Síndromes de Malabsorção/etiologia , Camundongos , Camundongos Knockout , Mucolipidoses/etiologia
4.
Curr Pharm Des ; 24(24): 2870-2875, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30198428

RESUMO

Sialic acid residues that make part of the cell surface repertoire of carbohydrate residues are implicated in various physiological processes and human pathologies. Sialidases, or neuraminidases, are the enzymes that are able to cleave and release the sialic acid residues, while trans-sialidases can transfer the residues from donor to acceptor molecules. They are important for processing the surface glycolipids and glycoproteins. Therapeutic potential of pharmacological sialidases inhibition is currently actively studied. Knowledge and expertise gained from genetic defects leading to human sialidase deficiency can be used for designing such drugs. In this review, we discuss the current progress in studying sialidases and their inhibitors and the relevance of these studies to developing novel therapeutic approaches. In vitro studies suggest that some sialidase inhibitors might be useful therapeutics for treating sialidosis, cancer, infections, immune diseases, atherosclerosis and other pathologies. Consequently, there is a field for further research and development. A thorough investigation of human sialidases is therefore crucial to human health.


Assuntos
Aterosclerose/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Glicoproteínas/antagonistas & inibidores , Doenças do Sistema Imunitário/tratamento farmacológico , Mucolipidoses/tratamento farmacológico , Neoplasias/tratamento farmacológico , Neuraminidase/antagonistas & inibidores , Aterosclerose/metabolismo , Inibidores Enzimáticos/química , Glicoproteínas/metabolismo , Humanos , Doenças do Sistema Imunitário/metabolismo , Mucolipidoses/metabolismo , Neoplasias/metabolismo , Neuraminidase/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo
5.
Hum Mol Genet ; 27(15): 2725-2738, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29771310

RESUMO

Mucolipidosis IV (MLIV) is an orphan neurodevelopmental disease that causes severe neurologic dysfunction and loss of vision. Currently there is no therapy for MLIV. It is caused by loss of function of the lysosomal channel mucolipin-1, also known as TRPML1. Knockout of the Mcoln1 gene in a mouse model mirrors clinical and neuropathologic signs in humans. Using this model, we previously observed robust activation of microglia and astrocytes in early symptomatic stages of disease. Here we investigate the consequence of mucolipin-1 loss on astrocyte inflammatory activation in vivo and in vitro and apply a pharmacologic approach to restore Mcoln1-/- astrocyte homeostasis using a clinically approved immunomodulator, fingolimod. We found that Mcoln1-/- mice over-express numerous pro-inflammatory cytokines, some of which were also over-expressed in astrocyte cultures. Changes in the cytokine profile in Mcoln1-/- astrocytes are concomitant with changes in phospho-protein signaling, including activation of PI3K/Akt and MAPK pathways. Fingolimod promotes cytokine homeostasis, down-regulates signaling within the PI3K/Akt and MAPK pathways and restores the lysosomal compartment in Mcoln1-/- astrocytes. These data suggest that fingolimod is a promising candidate for preclinical evaluation in our MLIV mouse model, which, in case of success, can be rapidly translated into clinical trial.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Encéfalo/efeitos dos fármacos , Cloridrato de Fingolimode/farmacologia , Mucolipidoses/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/tratamento farmacológico , Encefalite/genética , Encefalite/metabolismo , Encefalite/patologia , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos Knockout , Mucolipidoses/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
8.
J Neurochem ; 133(2): 174-86, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25581256

RESUMO

A growing body of evidence indicates that valproic acid (VPA), a histone deacetylase inhibitor used to treat epilepsy and mood disorders, has histone deacetylase-related and -unrelated neurotoxic activity, the mechanism of which is still poorly understood. We report that VPA induces neuronal cell death through an atypical calpain-dependent necroptosis pathway that initiates with downstream activation of c-Jun N-terminal kinase 1 (JNK1) and increased expression of receptor-interacting protein 1 (RIP-1) and is accompanied by cleavage and mitochondrial release/nuclear translocation of apoptosis-inducing factor, mitochondrial release of Smac/DIABLO, and inhibition of the anti-apoptotic protein X-linked inhibitor of apoptosis (XIAP). Coinciding with apoptosis-inducing factor nuclear translocation, VPA induces phosphorylation of the necroptosis-associated histone H2A family member H2AX, which is known to contribute to lethal DNA degradation. These signals are inhibited in neuronal cells that express constitutively activated MEK/ERK and/or PI3-K/Akt survival pathways, allowing them to resist VPA-induced cell death. The data indicate that VPA has neurotoxic activity and identify a novel calpain-dependent necroptosis pathway that includes JNK1 activation and RIP-1 expression. A growing body of evidence indicates that valproic acid (VPA) has neurotoxic activity, the mechanism of which is still poorly understood. We report, for the first time, that VPA activates a previously unrecognized calpain-dependent necroptosis cascade that initiates with JNK1 activation and involves AIF cleavage/nuclear translocation and H2AX phosphorylation as well as an altered Smac/DIABLO to XIAP balance.


Assuntos
Calpaína/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ácido Valproico/farmacologia , Animais , Apoptose/efeitos dos fármacos , Calpaína/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Mucolipidoses/tratamento farmacológico , Necrose/induzido quimicamente , Fator de Crescimento Neural/farmacologia , Células PC12 , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Proteína Serina-Treonina Quinases de Interação com Receptores , Fatores de Tempo
9.
Am J Physiol Gastrointest Liver Physiol ; 307(10): G992-G1001, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25258405

RESUMO

Microvillus inclusion disease (MVID) is an autosomal recessive condition resulting in intractable secretory diarrhea in newborns due to loss-of-function mutations in myosin Vb (Myo5b). Previous work suggested that the apical recycling endosomal (ARE) compartment is the primary location for phosphoinositide-dependent protein kinase 1 (PDK1) signaling. Because the ARE is disrupted in MVID, we tested the hypothesis that polarized signaling is affected by Myo5b dysfunction. Subcellular distribution of PDK1 was analyzed in human enterocytes from MVID/control patients by immunocytochemistry. Using Myo5b knockdown (kd) in Caco-2BBe cells, we studied phosphorylated kinases downstream of PDK1, electrophysiological parameters, and net water flux. PDK1 was aberrantly localized in human MVID enterocytes and Myo5b-deficient Caco-2BBe cells. Two PDK1 target kinases were differentially affected: phosphorylated atypical protein kinase C (aPKC) increased fivefold and phosohoprotein kinase B slightly decreased compared with control. PDK1 redistributed to a soluble (cytosolic) fraction and copurified with basolateral endosomes in Myo5b kd. Myo5b kd cells showed a decrease in net water absorption that could be reverted with PDK1 inhibitors. We conclude that, in addition to altered apical expression of ion transporters, depolarization of PDK1 in MVID enterocytes may lead to aberrant activation of downstream kinases such as aPKC. The findings in this work suggest that PDK1-dependent signaling may provide a therapeutic target for treating MVID.


Assuntos
Polaridade Celular , Enterócitos/metabolismo , Síndromes de Malabsorção/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Transdução de Sinais , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/antagonistas & inibidores , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Células CACO-2 , Estudos de Casos e Controles , Regulação para Baixo , Endossomos/metabolismo , Enterócitos/efeitos dos fármacos , Humanos , Síndromes de Malabsorção/tratamento farmacológico , Síndromes de Malabsorção/genética , Microvilosidades/genética , Microvilosidades/metabolismo , Terapia de Alvo Molecular , Mucolipidoses/tratamento farmacológico , Mucolipidoses/genética , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Fosforilação , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transfecção , Água/metabolismo
12.
J Clin Neurosci ; 20(2): 324-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23157844

RESUMO

Levetiracetam can suppress sialidosis-related myoclonus but its effects on cerebral metabolism warrant elucidation. In this report, fluorodeoxyglucose-positron emission tomography was conducted before and after levetiracetam in a sialidosis patient. By subtracting the drug "off" from "on" signals, regions of enhanced metabolism were shown to be allocated mostly in the bilateral fronto-temporal regions whereas regions of reduced metabolism were distributed mainly in the occipital areas. Imaging changes suggest that the effects of levetiracetam may be different in different brain regions. The drug may also elicit fronto-temporal inhibitory impulses to suppress the vigorous myoclonus in sialidosis.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Mucolipidoses/diagnóstico por imagem , Mucolipidoses/tratamento farmacológico , Mioclonia/diagnóstico por imagem , Mioclonia/tratamento farmacológico , Piracetam/análogos & derivados , Adulto , Córtex Cerebral/efeitos dos fármacos , Humanos , Levetiracetam , Masculino , Neuroimagem/métodos , Piracetam/farmacologia , Piracetam/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos
16.
Z Rheumatol ; 69(6): 527-38, 2010 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-20532791

RESUMO

Lysosomal storage diseases are a heterogeneous group of disorders caused by lysosomal enzyme dysfunction. Individually they are very rare, but this group as a whole has a prevalence of more than 1:8,000 live births. While severe phenotypes are easily diagnosed this can be a real challenge with attenuated forms. Because musculoskeletal complaints are frequently the first reason for the patient to seek medical advice, the rheumatologist plays a key role for the early recognition of these diseases. Since several of these can be treated very effectively by enzyme replacement, a timely diagnosis and start of therapy are essential to avoid irreversible organ damage and poor quality of life. Therefore, each clinical rheumatologist should be aware of the cardinal symptoms of lysosomal storage diseases.


Assuntos
Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças Raras/diagnóstico , Adolescente , Adulto , Criança , Comportamento Cooperativo , Diagnóstico Diferencial , Terapia de Reposição de Enzimas , Doença de Fabry/diagnóstico , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , Doença de Gaucher/diagnóstico , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/tratamento farmacológico , Doença de Depósito de Glicogênio/genética , Humanos , Comunicação Interdisciplinar , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/genética , Mucolipidoses/diagnóstico , Mucolipidoses/tratamento farmacológico , Mucolipidoses/genética , Mucopolissacaridoses/diagnóstico , Mucopolissacaridoses/tratamento farmacológico , Mucopolissacaridoses/genética , Fenótipo , Doenças Raras/tratamento farmacológico , Doenças Raras/genética , Esfingolipidoses/diagnóstico , Esfingolipidoses/tratamento farmacológico , Esfingolipidoses/genética , Adulto Jovem
17.
Mol Genet Metab ; 85(3): 181-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15979029

RESUMO

Given the success of enzyme replacement therapy (ERT) in treating the systemic manifestations in a number of lysosomal storage disorders (LSDs), we evaluated the effect of ERT on the mouse model of sialidosis. This glycoproteinosis, which affects primarily the reticuloendothelial (RE) system, is caused by deficiency of lysosomal neuraminidase (NEU1) and consequent accumulation of sialylated glycoconjugates. NEU1 lacks a functional mannose-6-phosphate recognition marker and is not endocytosed by mammalian cells. However, the enzyme produced in insect cells has features that allow its effective uptake by RE cells and macrophages via the mannose receptor, and therefore represent an alternative method of therapy. In this study we tested the therapeutic efficacy of baculovirus (BV) expressed mouse neuraminidase (Neu1) in sialidosis mice. Four-week-old Neu1-/- mice were first injected intravenously with a single dose of the recombinant enzyme for assessment of the half-life of mannosylated Neu1 in vivo. Afterwards, a short-term ERT with a total of five enzyme injections over a 2-week period was performed for evaluation of phenotype correction. Neu1 infused alone or co-administered with its associated protein, protective protein/cathepsin A (PPCA) was effectively taken up by resident macrophages in many tissues. Restored Neu1 activity persisted for up to 4 days, depending on the tissue, and resulted in a significant reduction of lysosomal storage. However, beyond 2 weeks of treatment, ERT mice developed a severe immune response towards the exogenous Neu1 enzyme. These results may have important implications for ERT in sialidosis patients.


Assuntos
Catepsina A/uso terapêutico , Mucolipidoses/tratamento farmacológico , Neuraminidase/uso terapêutico , Animais , Baculoviridae/enzimologia , Modelos Animais de Doenças , Quimioterapia Combinada , Marcação de Genes , Humanos , Camundongos , Camundongos Mutantes , Mucolipidoses/enzimologia , Neuraminidase/genética , Neuraminidase/imunologia , Neuraminidase/metabolismo , Proteínas Recombinantes/uso terapêutico
19.
Biochem Biophys Res Commun ; 168(2): 479-84, 1990 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-2334418

RESUMO

There is evidence that lysosomal proteases mediate the intracellular degradation of structurally abnormal collagen. I-Cell disease (Mucolipidosis II) is characterized by marked deficiency of many lysosomal hydrolases, including the collagenolytic enzyme cathepsin B. The experiments reported here tested the hypothesis that degradation of abnormal collagen would be severely impaired in I-cells. Skin fibroblasts from 3 patients with I-cell disease were incubated with and without cis-hydroxyproline, a proline analog that causes structural abnormalities in collagen, and [14C]proline. The amount of [14C]hydroxyproline in a low molecular weight fraction relative to total [14C]hydroxyproline was used as a measure of intracellular collagen degradation. Levels of degradation were significantly higher in I-cells exposed to cis-hydroxyproline than in cells incubated without the analog. Similar data were obtained for normal human fetal lung fibroblasts incubated under the same conditions. Degradation of [125I]-epidermal growth factor was used to assess the functionality of the lysosomal pathway for protein degradation, and it was much lower in I-cells than in normal cells. It can be concluded that a completely functional complement of lysosomal enzymes is not necessary for structurally abnormal collagen to be degraded intracellularly; the data suggest that a nonlysosomal pathway exists.


Assuntos
Colágeno/metabolismo , Hidroxiprolina/farmacologia , Mucolipidoses/metabolismo , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Fibroblastos , Humanos , Masculino , Mucolipidoses/tratamento farmacológico , Mucolipidoses/patologia , Desnaturação Proteica
20.
Pediatr Radiol ; 20(1-2): 80-4, 1989.
Artigo em Inglês | MEDLINE | ID: mdl-2602022

RESUMO

Evolution of the early bone lesions in two children with mucolipidosis 2 was followed from birth. The progression of the bone changes did not differ from healing of rickets. Low levels of 1,25-(OH)2-D3 were found in one child and he was treated with vitamin D; resolution of the rachitic changes was more rapid than in the untreated child. It is suggested that in mucolipidosis 2 bone reacts to two independent factors, one controlling calcium metabolism, the other depending on the primary lysosomal enzyme defect. Since ricket-like features are not present in the other mucolipidoses or mucopolysaccharidoses, the defect of calcium metabolism seems to be related to the specific enzyme defect of mucolipidosis 2.


Assuntos
Osso e Ossos/diagnóstico por imagem , Mucolipidoses/tratamento farmacológico , Vitamina D/uso terapêutico , Envelhecimento/metabolismo , Doenças Ósseas Metabólicas/congênito , Doenças Ósseas Metabólicas/diagnóstico por imagem , Osso e Ossos/metabolismo , Humanos , Recém-Nascido , Masculino , Mucolipidoses/complicações , Mucolipidoses/diagnóstico por imagem , Osteoporose/diagnóstico por imagem , Osteoporose/etiologia , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...